Electrochemistry meets Imaging –

Electrode Surface Analysis by means of MALDI-ToF-MS

Jens Fangmeyer¹, <u>Arne Behrens^{1,2}</u>, Uwe Karst¹

¹University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 48, 48149 Münster, Germany ²Bruker Daltonics GmbH & Co. KG, Fahrenheitstraße 4, 28359 Bremen, Germany

Applications of electrochemistry

Energy storage

- efficient energy storage
- Iongevity of battery cells
- different types of electrolytes and electrodes

Electrode fouling

WWU

MÜNSTER

safety aspects

Electroorganic synthesis

- electrochemistry as reaction initiator
- single-electron transfer (SET) reactions
- emerged as valuable tool in organic synthesis
- "green chemistry"

Analytical applications

- electrochemical detection methods
- electrochemistry as simulation tool for phase-I metabolism
- successful mimicking of oxidative in vivo transformation of pharmaceuticals

- possible adsorption of analyte molecules may lead to deposition on the electrode surface
- side reactions, e.g., polymerization
 - \rightarrow passivation of the electrode surface
 - \rightarrow intensity drop or even changes in reaction behavior

- Conclusions

electrochemical oxidation of three organic molecules

- \rightarrow polymerization of all three investigated compounds
- \rightarrow formation of up to 17-mer has been observed
- \rightarrow adsorption on the electrode surface
- formed oligomers are accessible with MALDI-ToF-MS, some of them without matrix application
 - \rightarrow oligomer size distribution differs over the whole electrode reaction surface
 - → dependency on the flow direction, and therefore contact time can be visualized
 - → MALDI imaging helps identifiying "weak spots" during the electrochemical process