Expanded Coating Analysis Performance for electroless Ni Plating and Bath Analysis with Micro-XRF

Bruker Nano Analytics, Berlin, Germany Webinar, December 05, 2018

Innovation with Integrity

Presenters / Moderators

Robert Erler

Product Manager Micro-XRF Bruker Nano Analytics, Berlin, Germany

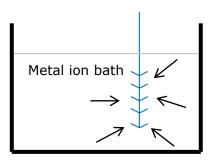
Falk Reinhardt

Application Scientist Micro XRF Bruker Nano Analytics, Berlin, Germany Expanded Coating Analysis Performance Webinar Outline

- Overview of ENP basics
- XRF Technology with M1 MISTRAL
- ENP use cases (1-3)
- Other light element applications
- Live Measurements
- Questions and Answers

Electroless Ni Plating

What is electroless (chemical) plating? Short overview

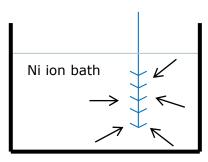

Normal galvanic plating/coating

- Sample/base material must be conductible
- Coating homogeneity depends on the current distribution on the surface
- Max. thickness is limited
- Growth parameter depends on both, bath solution properties and power settings

Electroless (chemical) coating differences

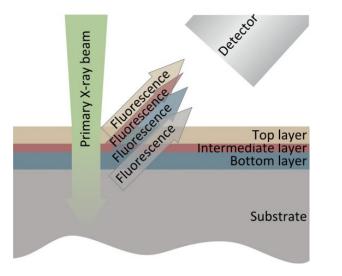
- Sample/base material must not be conductible
- Coating homogeneity increased (autocatalytic)
- No max. limit in principle
- Alternative to Cr-6 coatings
- Wear and corrosion resistance, electrical resistivity, lubricity and hardness increased, ductility decreased
- Growth parameter depends on bath solution properties

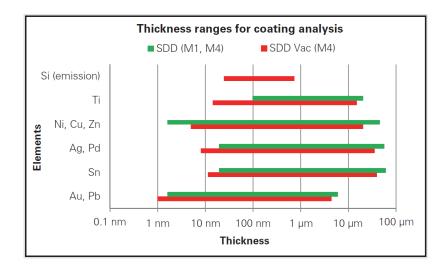
+ V -	
<u>Metal ions</u> →	1111



What is electroless Ni plating? Short overview

Electroless Nickel (EN) plating/coatings


- Sample/base must be cleaned very carefully
- For autocatalytic reaction a reducing agent is needed
- This can be hypophosphite (PH₂O₂⁻) or borohydride (BH₄⁻) or other organic Boron compounds
- Most common available are NiP coatings (ENP)
- Possible added elements could be light compounds (teflon, silicon carbide) or heavy elements for a ternary alloy NiPX (X = Cu; W; Mo)
- Three levels of P content in the layer:
 - Low-phosphorus ENP (< 4% P)
 - Medium-phosphorus ENP (4% 10% P)
 - High-phosphorus ENP (10% 14% P)
- Applications:
 - Automotive, Aerospace, Electronics, Chemical processing, Oil and Gas industry, Others

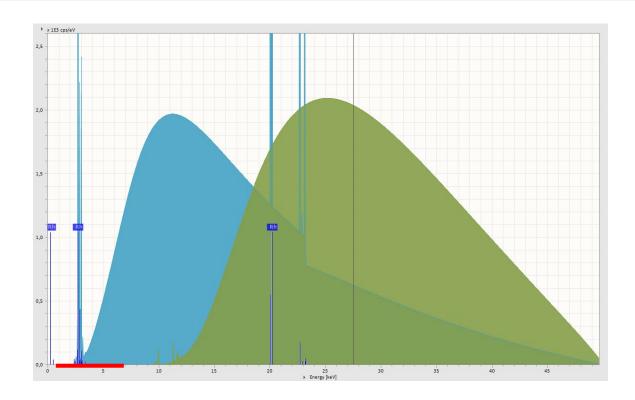


Why XRF for coating analysis? Short overview

Advantages of XRF

- Non-destructive and fast (down to 10 s)
- Multi coating thickness and composition determination (limitless coatings and elements)
- Small spot sizes for filigree structures or check of inhomogeneities (down to µm spots)
- Certain thickness range (depends on main element)
- Certain element range (depends on hardware)

Micro-XRF for coating analysis M1 MISTRAL

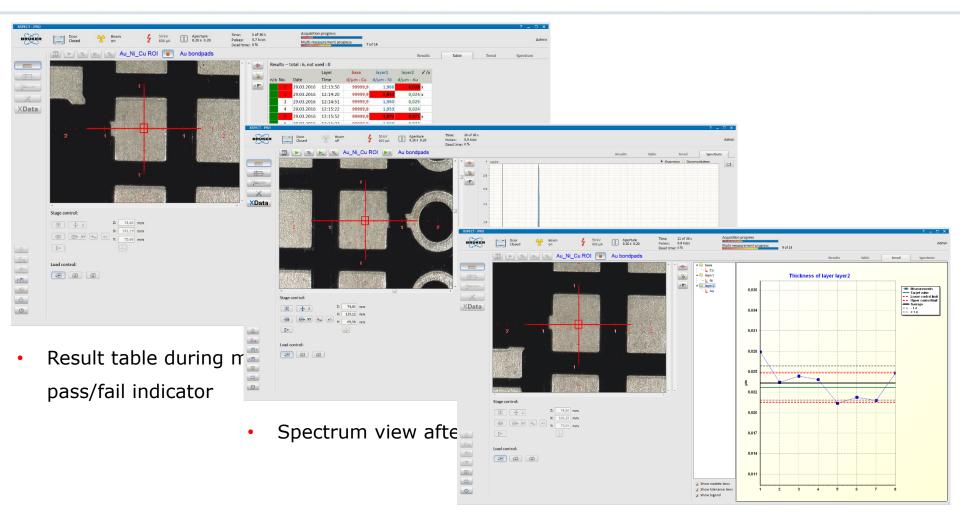


- State-of-the-art XFlash® SDD technology
- Measurement on air
- Programable stage and easy to handle routine analysis software
- 50 W micro-focus tube with W or Rh target

Micro-XRF for coating analysis M1 MISTRAL Rh vs. W Target

- State-of-the-art XFlash® SDD technology
- Measurement on air
- Programable stage and easy to handle routine analysis software
- 50 W micro-focus tube with W or Rh target

Micro-XRF for coating analysis M1 MISTRAL



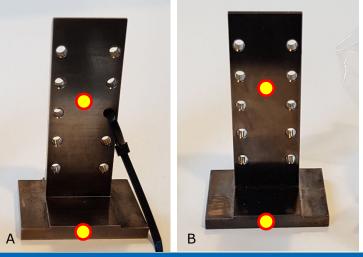
- Used instrument M1 MISTRAL in Bruker Nano lab, Berlin
- 50 W micro-focus Rh target X-ray tube (Be window)
- Collimator changer J01 (1.5 mm and 0.6 mm spot size), measurement times 30-120 s
- NiP analysis methods supported with standards and relative mode

Micro-XRF for coating analysis XSpect Pro GUI

Trendline diagram during measurement

Micro-XRF for coating analysis XData Calibration

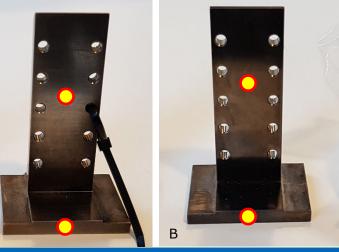
METHOD EDITOR		?	METHOD EDITOR						?
NiP-SbBi_Cu-cal rel			NiP-SbBi_Cu-cal rel						
		Structure Normation Calibration Spectrum				Structure	Normation Cali	bration	Spectrum
	Layer parameters	Structure		Calibration samples					
Method data	Name base	Layer Chemical elements	Method data						
Description	Compound	^	Description	Layer Parameter	base base	layer1 d(µm)		Ni(%)	P(%)
NiP-SbBi_Cu-cal rel	Start thickness 19,999,9		NiP-SbBi_Cu-cal rel	No. Sample	W. Std	calib. Std	calib.	Std calib	
Туре			Туре	0 8560NiP5_5	1	8,56		94,50 94,5	
layer -			layer	1 3730NiP9_0 2 1910NiP8 3	1-	3,73 1,91		91,00 91,3 91,70 91,3	
Spectrum deconvolution	Fixed thickness Calc. mode Relative		Spectrum deconvolution	2 1910NIP6_3	1	1,91	1,94	91,70 51,5	o/ 6,50
Standard spectrum deconvol -			Standard spectrum deconvol						
Comment	Normalize sample/standard Target value (%) 100,00		Comment						
	Target value (%) 100,00 Density								
	Default 8,96	=							-
Measurement parameters	O User 0,00	layer1 Ni p Sb Bi	Measurement parameters	Deviation (o)			0,03	0,26	
HV/kV 50 •	Use tolerances?	base Cu	HV / kV 50 -	•					D
Collimator / mm 1.50 o -			Collimator / mm 1.50 o 🔹	📑> × %	I 🔒 🖸			FP	calib.
Atmosphere Air •		+ ×	Atmosphere Air 🔻			calib. layer1 (µm)			
Current / µA 800 \$		Element overview	Current / µA 800 \$	 Normation type Sample to 100,00 % 		11,858			
	H				100	9,702	/	-	
Measure time /s 30	H U Be B C N O F Ne		Measure time /s 30	Calibration curve offset		8,624 7,546	0		
	Na Mg K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr	Element Z Main line Start conc.		Use offset [Calibration parameter		6,468			
Change parameters	Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe	Cu 29 KA 100,00 %	Calibration coefficients	Order of polynom 2		5,39 4,312			
Change parameters	Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn					3,234	•••	· · · · · · · · ·	
	Fr Ra Ac Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu		0 7.596156264E-1			2,156		<u> </u>	1
	Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr					2 4	6 8	10 12	
		< >						<-	> 🖹


- Method calibration with XData as part of XSpect Pro
- Simple defining the coating structure and linking to pure element intensities
- Simple calibration with different settings after loading suitable and available standards

ENP use cases 1 Quality check by supplier

Start

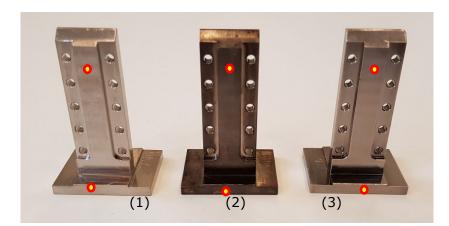
- Same base material but different coating suppliers (A and B)
- Target coating DNC471 (high ENP, Pb and Cd free) 20 μm thickness
- Parameters to be checked for comparison:
 - Thickness, P content, impurities, homogeneity
- P is invisible for W target excitation (X-ray tubes) but can be determined e.g. with Rh target excitation
 - P content can be set for the analysis based on beforehand knowledge


ENP use cases 1 Quality check by supplier

Result

- Coating from supplier A is significant thinner than 20 μm
- Coating from supplier B has Sb impurities effect on coating properties unknown
- Both are Pb and Cd free
- Both have same results at both points homogeneity ok
- P content differs and is less than 10 % for both
- Deviation of P determination influences deviation of coating thickness
- Setting P to a certain value decreases thickness deviation but check of P content is lost

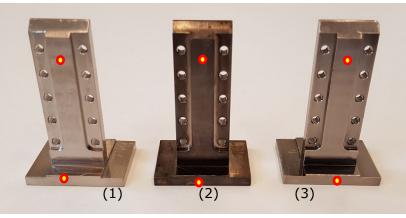
1.5 mm, 30 s	Supplier A	Supplier B
Thickness NiP	(<mark>8.56</mark> +/- 0.10) μm	(20.46 +/- 0.26) µm
P content	(6.61 +/- 0.28) %	(7.87 +/- 0.29) %
Sb content	n.a.	(1.71 +/- 0.05) %
Thickness (<mark>P</mark> set to 8.22 %)	(6.99 <mark>+/- 0.01) μ</mark> m	(20.44 <mark>+/- 0.01</mark>) μm



ENP use cases 2 Quality check of cleaning process

Start

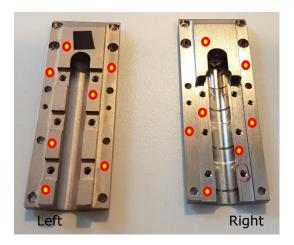
- One batch of supplier B (use case 1)
- Target coating DNC471 (high ENP, Pb and Cd free) 20 μm thickness
- Cleaning process:
 - Incoming material (1) \rightarrow cleaning with acids and base (2) \rightarrow polishing with paste (3)
- Parameters to be checked for changes:
 - Thickness, P content, impurities, homogeneity


ENP use cases 2 Quality check of cleaning process

Result

- Homogeneity ok
- Polish step does increase P and also the total thickness
 - Surface contamination (organics or oxides invisible for XRF) can reduce P signal, polish step eliminates this → more P signal and therefore higher content.
 - Total thickness depends on density → depends on P content
 - Increased P calculation based on detected intensity reduces the calculated density → increase of calculated thickness
 - Only minor changes within supplier tolerances

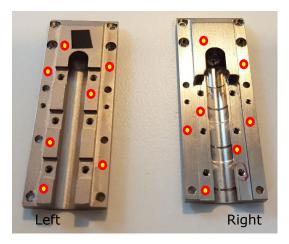
1.5 mm, 30 s	(1)	(2)	(3)
Thickness NiP	<mark>20.42</mark> μm	20.46 µm	<mark>21.06</mark> μm
P content	<mark>8.06</mark> %	7.87 %	<mark>8.65</mark> %
Sb content	1.24 %	1.71 %	1.60 %
Thickness (P set to 8.22 %)	20.28 µm	20.44 µm	20.38 µm



ENP use cases 3 Quality check of properties

Start

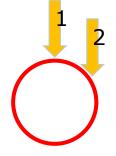
- Different parts and coatings from supplier A
- Target coating DNC471 (high ENP, Pb and Cd free) unknown thickness
- Surface appearance difference:
 - Left: dull, rough
 - Right: shiny, smooth
- Parameters to be checked for changes:
 - Thickness, P content, impurities, homogeneity


ENP use cases 3 Quality check of properties

Result

- Homogeneity ok
- Surface appearance difference caused by:
 - Thicker coating, less P and Sb content (left to right)
- Choosing a wrong P content as set value leads to wrong thickness values

1.5 mm, 30 s	Left (dull)	Right (shiny)
Thickness NiP	9.63 µm	13.01 µm
P content	9.48 %	6.12 %
Sb content	1.63 %	n.a.
Thickness (P set to 8.22 %)	9.13 µm	13.92 µm



Other Light Element Analysis

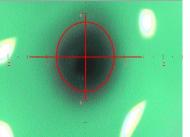
Light element coatings Phosphatized Screws

- Samples are black and dull screws
- Unknown coating structure
- Elements present for sure: P, Zn, Fe
- Correct spot size and position must be chosen because of side effects for detection (here: 0.6 mm spot in position 1)
- Assumed coating structure: P on Zn on Fe (P/Zn/Fe or P_Zn_Fe)
- Larger measurement times recommended (> 120 s)
- Calibration similar to ENP possible
- Result: P layer with 0.44 μ m; Zn layer with 0.35 μ m; Fe base without detectable traces

Light element bulks Resins check

- Sample is a raw material made of resin
- Detectable elements: S
- Largest spot and larger measurement times recommended (> 120 s)
- Calibration similar to ENP possible
- Result: 0.13 % S in light matrix (invisible for XRF)




Bath Analysis (Light Matrices)

Bath Analysis Ni and Au bath solution

- Sample is liquid, solution containing Ni and Au
- Detected elements: Ni, Au, K, Ti
- XRF suitable sample holder needed:
 - Surface must be large enough (micro-XRF, 1.5 mm spot, surface diameter 10 mm)
 - Holder material must be invisible (for XRF, e.g. polymers)
 - Sample volume must be deep enough (> 20 mm)
- Largest spot and larger measurement times recommended (> 60 s)
- Comparison of different sample holder types, focus on holder
- Calibration similar to ENP possible
- Result: Ni 2.0 g/l; Au 3.2 g/l; K 64.9 g/l; Ti 0.3 g/l for both sample holder

Measurement Examples

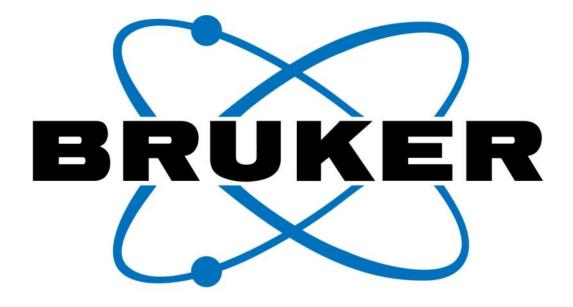
Live Measurements Examples

- Samples: ENP curved piece, phosphatized screw and bath solution
- Method selection, measurement series and stage program
- Method creation and calibration process

Q & A Time

More Information

For more information, please contact us:


robert.erler@bruker.com

falk.reinhardt@bruker.com

info.bna@bruker.com

https://www.bruker.com/products/x-ray-diffraction-and-elemental-

analysis/micro-xrf-and-txrf/m1-mistral/overview.html

Innovation with Integrity